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1. INTRODUCTION

The basic problem of periodic interpolation can be explained as

follows:

-given a finite set of distinct points t, , • • of the

interval Eo,-rr) and a set of real scalars ,.

- construct a 2Zir - periodic function s belonging to the linear

variety VN of all interpolants of a suitable space oe

For practically relevant candidates of solution additional information is

clearly needed, in particular polynomial precision and smoothness. This

essentially amounts to restricting the set of 2e - interpolants by

constraints involving a suitable "energy" norm.

In this connection a quadratic (semi-) norm generated by the integral

~1..

0

has proved most efficient, where the differential operator

+ 0 'AAXY + o9( )-r) .. (( i l)- + ) (1.3)

annihilates all trigo-iometric oolyromials

5() ~ (Q 0 ~ (~ be (1(~ .4)
AE ,0
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of order m.

A proper setting for the problem of minimizing the(quadratic)

functional (1.2) under interpolatory constraints is provided by the

class ? = (1#" *)EO, 2r of 27r - periodic functions, whose

(distributional) derivatives up to the (2m + 2) -th order are square-

integrable on the interval Eo,,2Tr]

The solution s of the minimization problem

AT IT

f/ 0 f2,~~fd 00 I' f ()1 dx (1.5)
0 IVNV 0

is called (optimal) trigonometric spline interpolant in

The trigonometric spline interpolant is essentially given by the

following properties (cf. Schoenberg (1964)):

(i) s is 2)r- periodic and continuous

(ii) s is infinitely differentiable for all points -6 e Co,.Ir)

& " & Ik -, 1 . .., A/ with 2Zt S(-I 0,

i.e.: s reduces to a trigonometric polynomial of order m for

all points -I eo, 210 with # t k

(iii) S (-) - Y for k =-i...* ,V.

Spline interpolation turns out to be a most adaptable method to

data for (global) interpolation, and the (semi-) norm (1.2) is a natural

setting to maintain tne flexibility of ptecewise trigonometric polynomials

wnile at the same time achieving some degree of global smoothness. Of

pa 'tlcular usefulness is the spline interpolant corresponding to the

auadratic integral mean of the 'linearized) curvature



3
(1.6

since the quantity (1.6) may be physically interpreted as the potential

energy of a(statically deflected)thin beam (which indeed is proportional

to the integral of the square of the (linearized) curvature of the

elastica of the beam) (cf. Moritz (1978)).

Trigoiometric splines may be interpreted as the spline functions

for the (unit) circle, i.e. trigonometric splines are the two-dimensional

analogues of the spherical splines discussed in this paper.

Roughly speaking, the spherical interpolation problem to be of

importance for geodetically relevant purposes can be formulated as follows:

- given a finite set of distinct points (stations) , .. ., ' of

the (unit) sphere - and a set y , .. , y. of real scalars

(observations or measurements)

find a (smooth) function S - belonging to

the linear variety of all interpolants of a suitable space

/V < . . (1.7)

In order to achieve uniqueness it likewise seems quite natural to look for

an interpolant minimizing an appropriate quadratic norm in such a way that

additional assumptions concerning polynomial precision and smoothness

again are satisfied. This can be done in the same way as in the trigono-

,etric case by using a differential operator annihilating all rolynomials,

i.e. spherical harmonics of order m or less. Observing the fact that the
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spherical harmonics S, of order n are the everywhere on the (unit)

sphere regular eigenfunctions of the Beltrami operatorA! corresponding

to the eigenvalues A - r ( i +i) , i.e.

on the unit sphere 2 for all spherical harmonics S._ of order n, the

(simplest) operator playing the same role as the operator (1.3) is given by

the product

(6*) - (z6*+o)(A,'A) . . . ( A . (1.9)

A proper setting for optimal spherical interpolation is provided by the

(Sobolev) space ; _.,i-)(-) of functions whose (Beltrami)

derivatives up to (A) (in the distributional sense) are square-

integrable on the sphere (cf. Chapt. 8). Equipped with the (semi-)

norm -1• v= 5,VT- generated by

S 0(~ .12 d~(.10)

the linear space ( '2) is a (semi-) Hilbert function

space of continuous functions on the (uiit) sphere 2 Therefore. in

comparison with (1.5), the(optimal) spherical interpolation problem to

be analyzed in this paper can be formulated as follows:

find a function S G V' N  such that

( ) f (
' 4'E VM
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As described in detail the variational problem (1.11) is well-posed in

the sense that its solution exists, is unique, and depends continuously on

the data y , . . . Basic tool is the theory of Green's functions

of the sphere with respect to the operator (1.9).

The spherical spline interpolant is essentially given by the following

properties:

(i) s is continuous on

(ii) s is infinitely differentiable for all points c- 2, 7k ,

- ', ... ,N with ( A* +) ) . ( '+ . .s( ).O, i.e.

s reduces to a polynomial of order 4 ryt for all

points ' E . with k 4= ... /-'

(iii) SA/) >1 for .

Spherical spline functions (s.s.f.) have the following attractive

features:

The linear space of all s.s.f. (of order m) is finite dimensional;

s.s.f. are relatively easy to manipulate and compute; various matrices

arising in interpolation and approximation problems are nonsingular,

s.s.f. do not tend to produce approximations having severe oscillations

and undulations.

Thus s.s.f. seem to be best suited for macro - and micro modeling of

earth's gravitational field. Moreover, a variety of problems of "optimal"

integration on the sphere leads to spherical spline functions. In

addition, the whole solution process can be made surprisingly simple and

efficient for numerical computation. Indeed, the computational scheme for

solving the interpolation problem can be described in a recursive form

based on a combination of generalized Lagrange and Newton formula. lhis

means that the method is constructed so as to have the so - called
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permanence property: the transition from the solution with respect to

N data to the solution with respect to (N + 1) - data necessitates merely

the addition of one more term, all the terms obtained formerly remaining

unchanged.

The price to be paid for the convenience of the permanence property

is a biorthonormalization process.

0!
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2. DEFINITIONS AND NOTATIONS

denotes the three-dimensional real Euclidean space. We consistently

write x , , ... for the elements of 3

Let e , e be the canonical (orthonormal) basis in

e e ( (- = (2.1)

In components we havefor elements x x L

x = e1 + +

aa +(2 
.2 )

The inner product of x a c .4 is the number

E|Ix a - I='z +' - / (2.3)

the norm of x E 71 "- is the (nonnegative) number

)I (2.4)3I

For all elements x = /3. different from the origin, we have the

representation

x -y- = Ix /XT + -. × (2.5)

where is the uniquely determined dirctional unit vector of the

element x I-

The unit sphere in wil be called .2,( The total surface of

will 'De denoted by Or
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J d -7 .= (diz: surface element).

The rectangular coordinates (2.1) are related to the polar coordinates (2.5)

by the equations

-r , =-- (2.6)

i .e.:

X, = - TTq cos

/j r 4. .LZz szn (2.7)

x 3  = "- r -6

polar distance, )v : geocentric longitude). In terms of the coordinates

(2.6) the Laplace - operator

/3x ) + _ (2.8)

takes the formI

S = - .-1- - + .(2.9)

A* denotes the (Laplace - ) Beltrami - operator of the unit sphere

.. ,- ((2.10)

S ,_ ) -,- I /_ _1
c-i- / Zi u  t

Cn- 0

IL I n l .. . . . 1 .. . ...I
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3. SPHERICAL HARMONICS

The (Laplace -) spherical harmonicsS, of order n are defined as the

everywhere on the unit sphere S- infinitely differentiable eigen~unctions

of the Beltrami differential equation

(, ) 0 (3.1)

corresponding to the eigenvalues

A. rz + 4n ('3.2)

The set of all eigenvalues is the spectrum

S(=) = n =(,+I)) 0, 4, (.... 3.3)

As is well-known, the functions H n  given by

H- Ixj / S, (3.4)

are polynomials in rectangular coordinates which satisfy the Laplace

equation

x /-/ (x) =0 (3.5)

and are homogeneous of degree n. Conversely, every homogeneous harmonic

polynomial of degree n restricted to the unit sphere 2 is a spherical
harmonic of order n.

The Legendre polynomials P given by

"4 (n--.Z S (3 6 )

iI
0
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are the only everywhere on the interval s-7, infinitely differentiable

eigenfunctions of the Legendre differential equation

[ 4 - r L]~ t)= (3.7)

which in t = 1 satisfy ' ( ) '1

Apart from a constant factor, the Legendre polynomials are the only

spherical harmonics, which are invariant under orthogonal transformations

with the "north-pole" ea as fixed point.

0

Spherical harmonics of different order are orthogonal in the sense

of the inner product

I 0 f. (3.8)

The linear space VP of all spherical harmonics of order n has the

dimension

dm 4 2n+zl. (2.94

In other words, there must be . + 4 linearly independent spherical

harmonics

I(3.1. I
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We assume this system to be orthonormalized in the sense of the / -inner

product

: f ., ) Cla d (311)

(S,,: Kronecker symbol) 0

. denotes the linear space of all functions in three variables which

restricted to the unit sphere Q) may be represented by homogeneous poly-

nomials of degree m or less. .. , admits the orthogonal decomposition

with respect to the 2-inner product, i.e. to every S G there

exist spherical harmonics So . . S .. with

.2= , ('6,, . ) = 0 (3.12)

( i 6

Hence, the dimension of E$is equal to

H d cm( ) _ - (.2vi)(3.13)

For any two elements , 2 , the sum

is invariant under all orthogonal transformations A. i.e.:

6,(- ' A ,) (3.14)



12

for all orthogonal transformations A. For fixed ' E 2, , - ( ', 7)
is as function of a spherical harmonic of order n. is ( is

symmetric in f' , Z3 and depenas only on the scalar product of and

Thus it is clear from the above that we have, apart from a multiplicative

constant . tI

e,, ) s-,P() = (.). (3.15)

In order to determine c we set ' = . Then we obtain

J-4'

Integration over yields

.2n'4 - (3.17)

Therefore we find the addition theorem

in particular, we have

C-

Let ) be an absolutely integrable function on the interval - ,,

i.e ' LC-4,. Then, for every SeCKe's formula

(cf. M'Gller (1966), Freeaen (1979)) gives

I~~ ,(~~)/n~(.0
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where

+4

/2w -f b) e) d{ (3.21)

The notation ta(7) means the surface element de-t is applied to the

variable.

Hecke's formula establishes the close connection between the orthogonal

invariance of the sphere and the addition theorem.
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4. FUNDAMENTAL SYSTEMS

Unfortunately, the system of spherical harmonics

IS ' n"+ (4.1)

is not unisolvent on the unit sphere 2 , i.e. the matrix

S., (4) S 7,.)

S""

S , (70) (4SmW (.2)

is not non-degenerate for all choices of M distinct points M.,,..., '2

lying on P6 . This is known from Haar's theorem (cf. Davis (1963) Theorem

2.41)). however, it is easy to prove that there exist systems of points

?4 ' -**'# having a non-degenerate matrix (4.2). For, it is certainly

possible to find a point , with S,,, ( ) 0 . We consider the

determinant

de~(Sg1 4.3)

As a function of , this determinant cannot be identically 0, for, else

S.,, and 6,,,, would be linearly dependent. Therefore there is a
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point such that

del& ( ) 0. (4.4)

in the same way we discuss the determinant

del -E, (~~) S~ (7') S (" (4.5)

and by the same arguments there exists a point ' ? for which (4.5)

is different from zero. Therefore, by induction, we can find a system

of points . such that the miatrix (4.2) is non-degenerate.

A set ?,..., m of tM (,+ 4 )a points of the unit sphere

is called fundamental system of order m on , if the rank of the (M,M)

- matrix

S. () • s, 3 (3)-- (4.6)

is equal to M.
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A set o ,.. / p., nf N M -1(+ 31 (distinct) points of the

unit sphere 2 is called admissible system of order m on Q , if the

rank of the (M,N) - matrix

So,. ( .) So, (7N)

- (4.7 (

is equal to M.

NOTE: In the sequel we assume that each admissible system I "

of order m has as subset the fundamental system .• .• . of

order m (consisting of the first M elements ', • , )" This

is always achievable by reordering. -3

Given a function SrE of the (general) form

S( ) = IZ i C"-  s,() (4.8)
PE .0 W 4

For an admissible system / V , c Cf order m on the

linear equations

0

(4.9)
(.:o, , ; j - ,.. , . +

are solvable in the unknowns a,, m, n, Thus, for every admissible

system '/ of order m on .2 and all solutions ai . ... , c ef

the linear equations (4.9) the element 5 , of the forii (4.1)

can be expressed as follows:
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N ,

' - ,.Z :7, 7 z 'sl, (,,) . , , ) (4.10)

Using the addition theorem we obtain

But this means that the N functions given by

(4.12)

span the space :

-spar (( tz (4.13)

ft~O 0
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5. GREEN'S FUNCTIONS

We next define the Green function of the unit sphere with respect

to an operator 6 ' + A t , An oE S( 2)(cf. Freeden (i97i/19')).
This function will be of great importance for the definition and the

application of spherical spline functions.

We begin our considerations by introducing the definition:

A function (A, f, ?) is called Green's function of

the unit sphere I with respect to the operator A* + Ar. and

the parameter f E if it satisfies the following properties:

(i) §(At; f, ) is as function of ', for fixed , infinitely

differentiable for all v c S2 with '# ' (differentiability;.

(ii) For all 7 eS2 with , P f

(W+ A-) A ;' ) = (.2rZ 4)P

(differential equation).

(iii) For all e 2.J

is continuously differentiable for all C 7 (characteristic
singularity).

(iv) For all orthogonal transformations A

AA 7 ) - 4(A

( rotati onal ysmjmerTa).

(v) A ;*'~)k ~~ dc(7  0

uniformly with respect to all -o

(normaiization).
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We first prove the unioueness of Green's function (A, '):

Denote by Z(A,%,; ) the difference of two Green's functions satisfying

the properties (i) (v). Then we have
(i)' -D ( ; v',. ) is as function of , for fixed C" S2

infinitely differentiable for all Z c -2 with 2, .

(ii)'For all with , # '

(iii)'For all e 2 , ( ',7) is continuously differentiable.

(iv)'For all transformations A

31 (An / A ,A , __ Cx, ',z)

S2
uniformly with respect to all ' -

The properties (i)' - (iii)' show that Z(A , is an everywhere on

the unit sphere S-2 infinitely differentiable function satisfying the

differential equation (ii)'. Therefore ZJ(,K ; f,2,) must be a spherical

harmonic of order n. Because of the property (iv)', Z)(A f,?) depends
only on the scalar product f.,,7 Consequently, we have

z (A ; rt 7) = t f

From (v)' we deduce that - 0 But this means that Green's function

S(,A,
; f, ') of the unit sphere .$2 with respect to the operator

+ \rt  and the parameter > J2 is uniquely determined by the

defining properties (i) - (v).

Following Hilbert's approach to the theory of Green's functions (cf.

Hilbert (1912)) we orove the existence of e (0, ; / ) by first

giving an explicit representation of Green's function to the operator
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An easy calculation 
shows that

-4 +

satisfies all the defining properties (i) - (v) of Green's function with

respect to . Hence,by virtue of the uniqueness, we have

-o , - 2A (4- '.7). - + . (.5,)

In order to assure the existence of ' (, ', ,) , A # 0

we consider the integral equation

+ +(si~A~.' )~ 0;7,)d~(

which establishes the close relation between Green's function { , and

the reso'vent of the kernel I(o; , It is not difficult

to see that

S co , £1 st c) d~cz)

(5.3)

ff + 7)]S, lo

for all spherical harmonics e .< of order iq > o. Tne integral equation

(5.2) therefore has a solution which is uniquely determined by the conditiors

f ~ An, ',7 ~ ~ d~(p') C' 5.4
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for all 7'

Observing the characteristic singularity of Green's functiorn we

obtain applying Green's (surface) identity

7r S

Thus the spherical harmonics of order n, i.e. the eigenfunctions 'S. of

the Beltrami - operator 6! with respect to the eigenvalues A.=

are eigenfunctions of Green's (kernel) function I (A,- ., ? ) in the

sense of the integral equation (5.5). Furthermore, if 7 E

with - 4 7 .7 - , the kernel (, 7',) allows the bilinear

expansion

z- - = ,, ( (5.6)

The symbol __ denotes that the sum is to be extended over all nonnegative

integers k with A k 5 An

Using the addition theorem we can rewrite the bilinear expansion of

" (. , in the form

According to the classical Fredholm - Hilbert theory of linear

integral equations (cf. Hilbert (1912)) we define iterated Green's functions

by the following convolutions

_K?
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. , ) is calleo Green's function of the unit

sphere with respect to the operator (+') = .

In analogy to techniques known in potential theory it can be shown

that, for integers ' > 4 , ' ( is continuous on the

whole sphere 2 as function of with fixed or as fLn-vton cf

with z fixed.

On the other hand, the bilinear expansion of (A0 ,.., Am, ,;

#aI Ii " -

2k#4

is absolutely and uniformly convergent both in " and " respectively

and uniformly in and g together. Thus the representation theorem of

(generalized) Fourier theory yields

Let in be an integer with en2. Then the derivative

isas function of ? for fixed , a continuous function on the unit sphere.

For integers m> 4, the derivative

(5.1(A

Pcssessesas function of , logarithmic singularity in .J Furthermork,

for elements w1th and integers kfl ? 4,
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(5.13)

h-, U.k+

IIII IIII- II ...- I i i - i i . .
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6. INTEGRAL FORMULAS

Let be a fixed point of the unit sphere . If now f is a

function with continuous second derivatives on 2 , tnen for each sufficiently

small p > 0 Green's surface identity gives

174

= -

Herein ds is the line element in '3 , while n is the unit vector,

normal to the curve If'-- I = _p on Q , tangential to S2 and

directed exterior to the set of all 7, 2 with if- I >p•

In identity (6.1) we first observe the differential equation of Green's

function

[Ia(, (6.2)

Io l 4?

in polar coordinates (2.6) the line element for f- 1 = fr can be

expressed by

. . .. . . . I 1 il -- ,. . . ..
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Therefore, by virtue of the logarithmic singularity of Green's function

5( , ) , we get in analogy to the well-known consider-

ations of potential theory, on passing to the limit P - 0 the theorem:

Let f be a fixed point of the unit sphere 2 Su9ose that

is a twice continuousl differentiable function on . Then

= L f f )d..()(6.3)

This formula compares the functional value of a function f <

at E R 2 with the mean (integral) value of on the unit

sphere ..

By use of Green's function (-o A- 1 ' ) with

respect to the operator ({A6+A,)( L +,+A,) we are able to generalize

the integral formula (6.3).

Observing the recursion property

( ,L7) F '(A 0. ; , 7) -

7r) f .1
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we obtain

+- d o .

Integration by parts, i.e. application of Green's identity yields for

a function 4 6

- f ( &Ik~ + .'oXi1? [(47~(J ~.

:n the same way, by integration by parts, we get

i2

f -3 S, (J t y -Z) [ ( )d
19,

fiP LT(Z
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Therefore, we have

.c )L(6 " .6)

'PI.

provided that is a four-times continuously differentiable function

on SL2 Thus, by combination of (6.3) and (6.6), we have for-fE C 'J(2)

a ~,(~)d a( 7 )(6.7)

More generally, by successive integration by parts we obtain in connection

with the definition of . (A, . , . ) and the formula (5.13)

the integral formula:

Let f be a fixed point of the unit sphere . Let be a

(2m + 2) - times continuously differentiable function on 2. Then

1~~ 21 ~ ff(~) ~ d6/,z (6.8)7-r
I,'t--"2

5-?'.'I"'"' "
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Inserting the addition theorem of spherical harmonics into the first term

of the right hand side we find

, ,_ 2T _ , (vf) ff S..()(69

This formula gives a comparison between the m-th partial sum of the ortho-

gonal expansion of ? into spherical harmonics and the functional value

of ? taken at the point ' S respectively(wit explicit

knowledge of the remainder term).

The formula (6.9) may be considered as the theoretical background for

problems of interpolation and best approximation by spherical splines. in

order co see this we have to modify our integral formula (6.9) using Green's

function

(6.10)

witn respect to the operator (4 "  ) • ( ,')) and the

parameter e

Inserting (5.10) into (6.10) we obtain as bilinear expansion

P P

4.pnce, t is oovious that

o (.
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Summarizing our results we therefore obtain the theorem:

Let be a fixed point of Q Suppose that is a

(2m + 2) - times continuously differentiable function defined on .

Then

(6.13)

- =o , jv(') & (7 c 5(.p0161

+(U
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7. THE DIFFERENTIAL EQUATION ( a) = (A)...( 4 . )f =

Let S be an element of class of the general form

i'c.O j_--
4

Then, observing the differential equation

(d; .A,~ S.- ( ) =0(7.2)

for ~t 0g. r-~ and for all p we have

(),, S" ( ) = "~ A 0 ) "" (~+(7.3)

Z Z:7 (, A.) -. +A) .

0

for all

On the other hand, it can be deduced from (6.13) that any solution

C L
"' ) p ) of the homogeneous differential equation

A ) ( * + ) S( ) 0 (7.4)

is repre.entabie in the form

s( ) =~ ,, .-2'-1*4 ~ ?)(,
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with coefficients C given by

ct.I = (', d~(?). 7.6)

But this means that '* is the null space of the operator

(,',, ( +£o 4- ( Z"+ ... 7.7)

The integral formula (6.13) will be used now tc discuss the general

differential problem

. . ( t; ) - ( ) -- +.< (7.8)

for ' e § and e C (S2 )
From Green's surface identity it follows that

SZ + ( )•• ( + . ' ]s< -7.0)

= 0

for .l! elements . belonging to I... . t is clear that any function

can be added to -f without changing the differential equation

.owever, if we require that is orthogonal to the null space of

(6" + A . .. (£ " A ,) , then the differential eouation is uniquely

Sol "'i
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Let be a continuous function onQ2 orthogonal to _ i.e.

f ~i ) &nj.( ) d = 0 (7.10)

for v O,... , l ;j" -,...,n+ .

Then the function given by

I~r

represents the only (2m + 2) - times continuously differentiable solution

of tne differential equation (7.3) which is orthogonal to .i .!

For integers -z the bilinear expansion

is absolutely and uniformly convergent on the unit sphere . Inter-

changing sum and integral we therefore obtain

as unique solution of the differential equation (7.8).
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8. THE HILBERT SPACE 7 "

In the class of all (2m + 2) - times continuously

differentiable functions on the sphere - we introduce the inner product

1 J 4
* +' ,

The space C , (,- equipped with the inner product (..)

is a non-complete inner product space, For the sake of simplicity we use

the abbreviation

P" n(o" ) "= Z (8.2)

The kernel &' ( ,y) admits the series expansion

'1,O - (8.3)

where the function-, are defined as follows

44y. = (8.A)

-, I
(- O-,r) S_ ,t +_ -.. ,.. .

" - -- . . . ... . . III . . . . II I . . . . . . . . t4
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k4 ( ', p) has the representation of an isotropic covariance function

on the unit sphere S2 ( with respect to Legendre polynomials). It is

clear that Z'm ( , 7) is symmetric in the arguments f" and ? ,

K (f 7,) K1 ('1 f'K • ly the Hecke formula we have

0

.2r + -1

Consequently, an easy calculation shows that

( f, . ( ',.) f f .7

7ut this means that

For every function ¢ C (I) and every point y "6

k/ (f z',) ,s a "rep-oducina kernel" in (2,%.) .

However, the kernel K, (f,?) itself dues not belong to CL -

a function of ' for fixed 'or as a function of for fixed t7

And tnat is the reason why we have to complete our soace C ;m * (- wit.
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respect to the topology induced by ( -

Let (SZ) denote the space of

all functions satisfying

Then

K. (!, ) = P ' q.7) + . (8,...
','o(8.10)

is the reproducing kernel for the Hilbert space (# )

i.e.:

(i) For each fixed , k (',') considered as function
o2f , is in 'W )

(ii) For every function f E Y ('-+-)(j 2 ) and every point

6 S2 the reproducing property

-f ( ') ( ( , "-I, ( f, )) (8.11)

is valid.

T is a Hilbert basis in -7 t .he system ,0 - ,, .- ..

J 1,'r" J '

NOTE: For the case m = 0 see Freeden (1978/1980) and Krarup (1979).

In the sequel we shall analyze in detail that a proper abstract

settinq for the problems of interpolation by spherical splines will be
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provided by the hilbert space (C " ( Q ) under consideration.

For that purpose, we have to prove first that , ( 2) is

a Hilbert function space of continuous functions on the unit sphere.

Let - be an element of ' C - ) Then, by

Schwarz's inequality, we get with a suitable positive constant

K (v', ) dependent on m

CM ) (8.12)

uniformly with respect to all points ' 2 . Furthermore, there exists

a sequence / 1 j of elements in ( ' ) ( -') with

S I ----- ( in the sense of the norm (,

Therefore, in connection with (8.12), we obtain

uniformly with respect to all " 6 2 . But this implies that

4k- ( ) ( f') uniformly with respect to r c 52.
Consequently, f is a continuous function on the sphere 31Z

The Hilbert space ( (2) is naturally equipped with

the (Sobolev-like) semi-inner product , defined by

corresponding to the semi-norm

.f )') ( )
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where 66 - .s to be interpreted in the

distributional sense.

The null space of the semi-norm < I = ,-'>, , is known to be

simply the linear space J, of dimension M = ( -I .2

It should be noted that the norm may be physically interpreted (at

least for pt. = 0 ) as the bending energy of a (thin) membrane

spanned wholly over the unit sphere 2 , . denotes the deflection

normal to the rest position of course to be spherical. This model is

suggested by the classical interpretation of the integral

bx

as the potential energy of a statically deflected thin beam which indeed

is proportional to the integral taken over the square of the (linearized)

curvature of the elastica of the beam (cf. Freeden (1981b)).

We summarize our results as follows: The (semi-normed) space
defined by (8.9) and(8.15) is a semi-Hilbert space of

continuous functionson the sphere



38

9. THE HILBERT SPACE C0(.i Z) (JQ)

Let , , , be a fundamental system of order m onSZ . Then

there exists a unique / .L satisfying

"'Za =" 74 , k =, . ,(9.1)

for any prescribed (real) scalars y, , , .' For, as function of

5 is representable in the form

-z s.(9.2)

Substitution with = , gives M linear

equations in these M coefficients C,,,

(9.3)

~~=OY d
4

p/

The linear equations are uniquely solvable, since their matrix (cf. (4.6).V

is assumed to be of full rank for a fundamental system of order m.

Hence, given a fundamental system ,, / of order m or ,

then there are determined uniquely M linearly independent elements of

, , , - such that
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~~~~i~~ 2i.I4~ (

i.e.:

0 , ±) =~ o , (%) --

For any - . we have

as the (uniquely determined) - interpolant of S on the point system

For any choice of (real) values y. the element

S" (Z) Z k(2)(9.6)

is the unique solution of the interpolation problem (7) -'.

in
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The polynomials 2 . . ., of the class 2 are called the

fundamental polynomials for pointwise interpolation. In order to evaluate

the functions given by

corresponding to a prescribed fundamental system / "'" / 1, of order

m on Q we have to solve the linear system

S " 2 + C .,4 C.•

ON t

* .. .. - .. .. .
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i.e. the matrix

CAC

is equal to

(o<eM) <  = (p,.j )+)-
: " ( 9 .7 )

(( )t: transposed matrix).

For every -f £ ct2 " + (.2),
M

is called the (generalized) Lagrage form. The maping

Ile
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is a linear projector of ar" )(,2) with range and kernel

Each function 6 - (?) can be represented uniquely

in the form

4< ' $ ' (9.10)

where 4 is of class l,2e ) (- 2?) and and e are

orthogonal in the sense of the inner product >

< f. , / >, " (9.11)

= 0

Equipped with the semi-norm

the linear space 0€'o 2"/(J2) is a Hilbert space of continuous functions on
the unit sphere 52 In view of the reproducing property of the

Kernel 1T,) in S" ) it is easy to see that
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<~ o, 7-'CAO, .. ,'K. , 7, 2,>

fo , 21. 211 S (a°, .. ,a i7 -

for every function Eo *' #, + (§2-) and every point

Moreover, the kernel

K0  ( , = ' -"o .. 'K-; , ') (9.13)

P.1

- 21 . ,,' ,., , ,<.

K -l I

<A

A=,

-~~ 3 21 15) kI)(
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belongs to the space 'O J2)

Therefore, our considerations can be summarized as follows:

The linear space ( ) defined in (9.9) is equipped

with the norm !I- /.,. a Hilbert space. c# /J)
possesses the reproducing kernel (9.13).

0I
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10. OPTIMAL INTERPOLATION PROBLEM

The basic problem of spherical interpolation shall be repeated now

explicitly as follows:

- given an admissible systeil , / 7,v, of points of the unit

sphere S2 and a set y1 , . of real scalars,

- construct a function S b? '2 belonging to the linear

variety

N L

of all interpolants in ,' ( 9. ) to the data.

To assure uniqueness of this problem, additional information is clearly

necessary. In problems of determining geodetic or geophysical quantities

some restrictions on smoothness and polynomial precision are required. This

can be achieved by restricting the set of interpolants using an (energy)

semi-norm. An interpolant minimizing such a semi-norm can be regarded as the

"smoothest" solution. In this connection the semi-norm I • represents

a natural setting as explained in our introduction.

From the definition of I - it is clear that

For rt 4 .,

-e'ice, the minimization problem ( N

,'sir4' 5 9
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is equivalent to the problem

V 
• (10.4)

Rrk: The case N M reduces to strict interpolation by spherical

harmonics.

From Chapter 9 we know that K, " , ' ) is the reproducing

kernel of ?' (1"+*t) ( 'Q) . Thus, for E 2,
0

< , ( .,3 ,) >A!o.

But this means that the matrix

(10.6)

is synmnetric and positive definite, viz. as Gram matrix of the (linearly

independent) functions K0., ( , . . / ,- •

These results now can be used to prove the main theor~m"

Suppose that (7v, ... , are prescribei data points
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corresponding to an admissible system 7 , ... of order m on
the unit sphere S-. Then, the function s e (c), Q) given by

EQ') CS ( ] + So(10.7)

with

and

Af

-M+. (10.9)

is the only solution of the interpolation problem

feVN

4 zP I !.
i.e."

'; --) I (A*? + o.. + Z,D rf- <,

e .. ( fj (A+, 0 ) .. . i

where the coefficients a +, . . . , satisfy
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the linear equations

M

Proof. (Uniqueness) Suppose that so is given in the form (10.9).

Then So is uniquely determined, since the linear equations (10.10)

admit one and only one solution , QN) because of the positive

definiteness of (10.6).

(Minimum property) In order to prove the minimum property of 5,

in V* with respect to I r#.% we consider the difference d0

of -5 and any function E. E :

a' °- 1 " (10.!i)

Of course, we have 0= for M+ . .. ,

Hence, by virtue of the reproducing property of -(0) in

it follows that

(~ ~~~~~ 'cfl ,.()4-L7;AY.(;A2 (d (10.12)

Al 
A

Z: a,, f[("

A/
- .Co(?
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Therefore it is obvious that

~-)+ CG~,A0  (7 zc do

= ().+Zf( 6/A ... (~~~)s~J

*~ I(~~ A+~ (.~$ Y0 ~I 0( 0>

This shows that

for all e V , where equality holds if and only if o

i.e. f. = S. .

For later use we write the matrix

N

,"I

- s-tr v
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in decomposed form. Observing the explicit representaton of

(see (9.13)) we obtain

M ,( 10.14'

* I

" Z

A AI (I

.,, .. 3 ,, .,, .. . '
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~7, 7m)7+ "i

Accordinq to the definition of the fundamental functions B ,

of the class we obtain

20 ( .1 ")
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(~~~ ~ 0) (7C."z~ Z, 4  0

Cg"

The matrix

C
I 0,4

is known from (9.7) to be equal to ( ae-

Consequently,

I 1.6
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S~so (7m)~
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11. SPLINE FUNCTIONS

The consideration given in Chapter 10 now leads us to the definition

of a spnerical spline with respect to an admissiole system of orC.r, C on

Let 2 .. ,, be an admissible system of order m on the unit sphere

~S2. .Then any function s "" (9 ) of the form

(10.7)

with arbitrarily given reals X, v,, and coefficients a ...,

is called a spherical spline function in X (J i) (.S) relative to

The class of all spline functions S in J 2.) relative

to I , ., is denoted by 2 (v, " "

The space . ) is a N - dimensional linear subspace o,

?ec"w lJ( -2) containing the class

From Chapter 10 it is known that the following interpolation oroper'j_

is valid in

Given T ( Z_ , then there exists a unique

element 5 6- . ."'',v, satisfying

I is' | ... . . . . ii ,, .. ..
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for k -1, Denote this uniquely determined element

of by S

By virtue of the definition of a spherical spline function

it is easy to show that the first integral relation

(q*t+Z (7-r) (,-~ )J dL3 (11.2)

holds for every e . (52). q

Moreover, it is easy to see that the second integra relation

#ITr



56

+ (2).', f/(-+A 0 )

holds for every 5 4 "? f' 2 dJ) and every S& tr,, -7., )
(cf. Freeden 1981a).

0

In order to calculate an interpolating spline function

we have to solve the linear equations

A/A

(/ -- -,+., ... , ,,,)

(Ci

whose coefficient - matrix is symmetric and positive definite. Solving

the system (11.5) is therefore a most simple problem: tne matrix can be

factorized by the well-known Cholesky procedure. This can be carried

through without any need for pivoting or scaling (cf. Cnapt. 13).
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12. APPROXIMATION OF LINEAR FUNCTIONALS

Let us consider linear functionals 7 .' ) - of

the following structure

7 0112 1

where the function g is assumed to be piecewise continuous on 2 , the

weights b 6.., are real and the points . , o lie on

S (d: positive integer).

Though this is not the most general class of functionals that might be con-

sidered on the Hilbert space ;' ' 2) ( 2Z) it is adequate for most

purposes and applications. Obviously included as special cases are the

following:

(i) rhe integral over (cf. Freeoen (1978))

or any subdomain of .9

S ~ '(&d.~.(12.1b)

(4i) the orthogonal coefficients of a function f on 42 (cf. Freeden

(1980/1981 a)) 67J
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being required in connection with (Fourier) series expansions of a function

into spherical harmonics

(iii) any functional value -(f) / ,

(iv) any finite linear combination of functional values of f at

prescribed points ,, •, on SZ (cf. Freeden (1981a))

d

L b, (12 1e

Our purpose is to approximate a linear functional of the form (12.1) by a

linear combination L of the form

A/

ZiLi - [Zi 3 j~ 1 12.2)

where 7, is a given admissible system of order m on JG

The functional L is called exact for the degreem, if L S 2 5

whenever - c - The remainder, when L is used to approximate 7

s a linear functional R defined by J .7- L . If the approximation

of 2 by L is exact for the degree m, then R - 0 whenever

Let b be a function of the space Z ' ) S L given

in the form (9.10)
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= , o (12.3)

where * is of class and (- is an element of Sa,(2).

Then we first get

(12.4)

provided the approximation -7 by L is exact for the degree m. Moreover,

the reproducing property of t, ( -' , ') in 7yzoi. z) (

implies that

(12.5)

(Observe: R is a bounded linear functional).

The notation ( means the linear functional R is applied to the

variable of j< (. , . The function K given by

I [(Z) = 9P k"°, ( ) ,'2 r ,(12.6)
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is called the spherical Peano kernel of order m for the functional R.

Combining (12.4), (12,5) and (12.6) we therefore find in connection with (12.2)

(d+ ~m (?~f(A ~/o6w+)7 J A

wi tfl

K~v K k (12.8)

= Jt< 0

A/

Applying the Cauchy -Schwarz inequality to the right hand side of (12.7) we

obtain

Q ( T (12.9)

a7 +/ A f(,7)1 d
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We note that 
the quantity

< k v< > ( 4  f4. fIA. ) *. (+A,)t( 7 Idy (12.10)
71 2

depends on the nodes . and on the operator ? , but not

on the function -

Collecting our results we obtain the following a priori estimate:

let -7 be a linear functional of the form (12.1) and let L be any

approximation of the form (12.2), exact for the deIgree m. Then, for

each function I 7

L-

The estimate (12.11) enables us to calculate the best-approximation

to , i.e. the linear functional L of the form (12.2)

t

7--~ ~ ~ 4 o [". _ YZ ) : )_7i.

exact for the degree m, for whicn the quantity < k< assumes

its minimum.

The minimum can be obtained by solvinq the uniquely determined

quadratic optimization problem
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A' 

A/ A/

l-Y Y '12.13"

It is easy to see that the quadratic optimization problem becomes its

minimum if

for Al fr4-i, . . N/ The linear equations ('12.14), howv,ever, have

a unique solution in the coefficients al I , ... (2.

Summarizing our results we obtain the tnecrem:

Let 7 be a linear functional on ? ( -'- L of the

form (12.1). Sppose that ( , ) is the solution of the

linear equations (12.14). Then, for each cE ( -i) , tne

linear functional L i by

I M

represents the best approximation to 7 (in tne Sense of the

estimate ' 12.9)).

The aroroximation L to 7 has as a ppqsteriori estiate
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~ (~Y' If/K(12. 15)

4-7r _L1 K

The best approximation ("F - approximation" in the sense of Krarup (1979))

opens a new (non-statistical) perspective for geodetic purposes of prediction:

to supplement the gravity information, which can be made at only a relatively

few points by determining further values of gravity at other points or to

compute best approximations of other quantities of gravity. Furthermore,

we have a priori information. o

From a theoretical, but also from a practical point of view it is of

great interest that there is a close connection between intev-oolating

spline and best approximation. This can be explained as follows ifor a

detailed proof see Freeden (1981a),Reuter (1982)):

Given a function e Z "6""- ( S?) Denote by S f the

uniquely determined interpolating spline

I L = '-f ! lI! t 2. 161
16 V
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to tne linear variety

= { . 4,,,,.,., 2 ) / q,(7 1 -Y= i(__ ),d.,, ,

Then the best approximation L to 7 is also uniquely determined by

the property that L _7 s whenever f .

In other words: there are two equivalent ways to compute the best

approximation L to .7

i) solve the linear equations (12.14) (using Cholesky's factorization)

(ii) apply the functional 7 to the (optimal) interpolating spline

ZI
Remark: Approximation of integrals based on the idea of Weyl's law of uii-

form distribution can be found in Hlawka (1982).

.......... . . . . .. .. .. I . .. . .. II - -- TLT 'i ..- - i ... . ........ - "
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13. NUMERICAL METHOD

Using generalized splines as e.g. proposed in Freeden (1921 a,b)(1982) and

Meissl (1981),one deals with functions lacking a local support. Hence the

normal equations are full and the size of the systems is limited in inter-

polation problems.

According to our considerations the data relative to various inter-

polation points now will be exploited in two steps based on a com'bination

of well-known procedures in interpolation theory (cf. Davis (1963)),

viz. the Lagrange interpolation and the Newton representation theorem.

This is of great computational advantage as regards the number of data

and the numerical effort. The standard algorithms to be used in our

method (Cholesky's decomposition, forward substitution) are indeed very

economical and numerically stable.

The great benefit of the method proposed here, however, is that "le

solution process can be formulated in a recursive way leading tc. t,

permanence property in spline interpolation problems. This will be

discussed now.

As we have shown, the spherical spline f; €_ € ',( 2 )
that interpolates the data points y, . ., ) can be

represented in the form

Yk k 1-1 0(13.1)

Assumed the points . . .,A form a fundamental system of order

on £ the functions 3.., 23m satisfy the Property

.3(t', ..
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for , = 4, . . i ( K Kronecker symbol).

If p ' ., , then

= 1 p70 3 ~ (13. 3'

Given y, , the function defined by

Mp- 7- ,)(13.4

is the uniquely determined solution of the interpolation problem

P( ,) y / 4: ,,..., frI (13.%

in the polynomial space

The expression

(13.6)

4s called (generalized) Lagrange formula.
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As is well-known (cf. e.g. Davis (1963)), the Lagrange formula has

one drawback, namely the lack of flexibility when passing from an inter-

polant to M data to an interpolant of more than M data. For instance, if

one desires to pass from the space J) to the space r) by adjunction of

2m + 3 points, one has to determine an entirely new system of fundamental

polynomials that are not related in a simple fashion to the old set.

In the Newton representation, however, the increase of data can be

accomplished simply by adding of additional terms as described now.

Suppose that { 7M a ,... is a sequence of admissible

systems of order m on -2

Then the (Gram) matrix

" ( 13 .7 )

is non-singular for each integer Q > 1.

Corresponding to the seauence { . GL,,.. we introduce the

sequence ( of evaluation functionals defined by

Then. accordinq to the biorthonormality theorem (cf. Davis (1963), Theorem

2.6.1). there are determined uniquely two triangular systems of constants

with b, 0 such that if

J.... ..... ... ..... .... . .. ... . . . . II .. . I I11 - - 1 -
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and (38

we have

ie.:

.5 4
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The result of biorthogonalization can be formally expressed by means of

determinants

LLL.

• - .., -1.

SPIN

Of great interest is that for the computation of the last determinant

only the points . . are needed from our prescribed

admissible system of order m.

Consider a function f of the subspace spanned by the functions

('A ' ., 7 7 ) I . , , 7), i.e. the set of all linear

combinations of the functions L<, , ' ( )

0-+
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Then ) *

QQ

{{:? :" " ( ? , ) / ', ( )(13.9)

The representation (13.9) is called (generalized) Newton formula.

Remark: For the following considerations it will help to describe the

biorthonormality theorem of Newton type in the language of matrices.

Let / and K/ designate the triangular matrices taken froin the

coefficient scheme (13.8):

j=4,... ,

and

Then it is characteristic for the biorthonormality theorem (cf. Davis

(1963), chapt. II, sect. 2.6) that I I '3

(I: unit matrix). This is equivalent to

Hd Ki3.IJbl

No,'. is a lower triangular matrix with non-zero elements on its ;;rin-

cipal diaqonal and df is an upper triangular matrix. Since the matrix

i is positi.ve definite and symmetric, the decompsition(13. ";o' s

,3ctually I /4-' d,- - factorization, wriere /-- is an upper trianqulir

and c" is a o )sitive doaqonal matrix. Therefore, there exists a uni me
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upper triangular matrix t c with positive diagonal elements

such that

This (uniquely defined) splitting of 3 . is known as the

Cholesky factorization (Cholesky decomposition)0

Our purpose now is to combine the advantages of the Lagrange formula

with the flexibility of the Newton formula. As a matter of fact, the solu-

tion process of optimal spherical spline interpolation can be achieved in a

recursive form.

As shown in Chapt. 11, the Droblem of determining an (optimal)

interpolating spline to the data

( ,. 7 , , Y ). ( ' I y"+a) (13.11)-

is equivalent to the problem of finding the function se '7,.,,a)

of the form

M

/Z): 7"y. /?) . Q~. y(13.12)

to the vector ote , .. a / satisfyinq

the linear equations
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M+GI

ZI I_ 11(13.13)

forP +

Using the notation (13.7) the linear equations can be rewritten in the

vectorial form

a = (13.14)

where the vector y / ( , ( > I , •) is

given by

Y - 2-I = ,Iy) (13.15)

Furthermore, setting for arbitrary but fixed C

we are able to express the 7inear combination

k,-
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as scalar product

a " ) (13.18)

+C
The (Q,Q) - matrix is positive definite and

symmetric. Thus, according to Cholesky's factorization theorem. tnere

exists a non-singular, upper triangular matrix r C + (with

positive diagonal elements) such that

M - (13.19)

t transposed matrix). But this yields in connection with

(13.14)

(Tl ( H (13.20)

Thus our expression (13.17) takes the form

13.21)
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Using the abbreviations

, / (13.22)

and, for each e 9..,

k~) , k ) (Z+&) I<~~7)(13.23"

we get

Using coordinates

tnis can be expressed as follows

7 y kk~~o (7.
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The sum of the right hand side of the last formula represents a
formula of Newton type (for algorithmic details cf. e.g. Davis (1963),

Meinguet (1979)). Furthermore, the computation of y , can be

organized, indeed, easily by forward substitution.

Summarizing our results we therefore obtain the following result:

Let 74 . be a fundamental system of order m on the

unit sphere 6 . Then each spline functio;: S 6 -.- (',,,., , )

of the form (13.12) can be represented in the form

Z - 7P (13.24)

Q t
where the vector e (,V/ (/ , - is the

solution of the linear system

M -(13.25)

and, for each but fixed 6 ,, k(' ) ,

(kw'()) = (k, ( , is the solution of the linear

system

) - ) = $ .(13.26)

++Herein t a / -re the uniquely determined

Cholesky - factors of i.e.
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S-,MQ t--MQ T m,, is an uper triangular.

The first sum of the right hand side of (13.24) is a sum of

Lagrange type, while the second sum is of Newton type.!C

Remark: The Cholesky factorization is one of the best direct methods

for solving linear systems with a positive definite, symmetric matrix.

The computer implementation of Cholesky's decomposition is simple.

Economy of storage can be achieved by working only with a linear array

of Q(Q + 1)12 elements consisting initially of the upper triangle of

6-" M + GL which is later overwritten with r . This

metiod is also economical as regards the number of arithmetic operations.

As is well-known, at most Q square roots and approximately Q 3 /6 operations

(I operation = I multiplication + I addition) are required, to be compared

,.;'th atowt Q3 / 3 operations for the well-known scheme of Sanachiewicz.

Fnr the coii;putational procedures, well-known routines (in double
:)rec.csion, if necessary) are available (cf. e.g. Wilkinson - Reinsch (i97)'..
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The spline of the form (13.24) possesses the permanence property, i.e.

the transition from the spline 5 Q c- (y,- ) interpolating

the data points (?Y, Y) , ., ( / to the spline

. * "" interpolating the data points

necessitates merely the addition of one more

term to the expansion of s , all the terms obtained formerly re-

maining unchanged:

S "+Q+" - 7- > .7>./(,) * Z- y4 D k>  ( )

- S Q+ x,-,++ •

The price to be paid is the change of the basis system for the spherical

harmonics of order 6 rm and the biorthonormalization process.

The reasons for the convenience of the permanence property are the

'oll owi ng:

(i) by virtue of the Cholesky - decomposition of the matrix

arM - (Q)t a = the i-th row of

depends only on ie rows ' C L of the matrix

+ aX

i) the quantities y k() are computed by forward

substitution.
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From an algorithmic point of view, the transition from tne spline

Mw

interpolating the data points

to the spline

(It ) A4Q

(M )
,nterpolating the data points

(T: positive integer) necessitates merely the computation of the addi:ional

terms in 01" and the continuation of the Cholesky Factorization

from + to

According to the iorthonormalization process, exclusively forward

substitu:ion (cf. (13.25), (13.26)) is required for the calculation of

the s.-m

H~j '1
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Remark: Generalizations to heterogeneous data (in forv of (bounded)

linear functionals) will be given in Reuter (1982) and Freeden/Reuter (1982).

Analogous considerations establish the permanence property in best

approximation problems.

Remark:

In modified form the interpolation method analyzed here has been

:roposed first by Meinguet (1979) in connection with the Beppo - Levi

soace ,( l({q) of continuous linear functionals defined on the

class of infinitely differentiable functions with compact support in

- dimensional Euclidean space q, for which all the oartial

derivatives

I 9

(in the distributional sense) of total order m are square - integrable

in _1P In tn;, case, Z (F9) is naturally equipped with

the semi-inner product corresnondinq to the norm

(. , , _(
,.,,, -q X .. 9

(dV: volume element)

wnere every partial derivative is to be interoreted in the distributional

sense.
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14. COMPUTATIONAL ASPECTS

The results developed in this paper give rise to the following

algor thm:

Step 1: compute the symmetric matrix (N = M + Q)

W,)(°,j.., .n; r ,, ' °.. A,,1. ,/

Step 2: print the matrix

/s,. () s,. N)

II
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Step 3: compute the matrix

*2 
(7J7)

--0'1 '( .) -- " -1 (Se. )/*

by solving the linear system

Stp4 ' (I).. - ., 7M ( I M (. (7Nj

( T .• . ( 7 "

Step 4: compute the symmetric matrix

(5

where k' 0 I. -) is qiven by (10.14)
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K'O

M

Step 5_:__ Cholesky -factorization of the matrix (KO(; ).. ,.,

M M

Step 6: determine the vector y qiven by

M

Step 7: solve the linear system (forward substitution)

( )t. =>

Step 8: choose tne viont 7 for which tne interooiating

spline has to be computed
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Step 9: compute the vector $(7) ( 3 (Z)L -  ) "

by solving the linear system

StepIO: compute the vector k{'7 ) given by

Step 11: solve the linear system (forward substitution)

M k)

Step 12: compute the interpolating spline s of the form (13.24) at the

point ,

Step 13: continue with Step 8

REMARK: The matrix

i ni a lgorit)-,

is not used anywhere in our algorithm.
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15. A SIMPLE EXAMPLE

We consider the potential of the'.buried~mass pointt

- y~(0,0,o.9).( )

Our aim is to approximiate u by a spherical spline function s,

interpolating in given points ? ,.. ., Zv of the unit spriere.

We chose 62 points generated by regular polyhedra

(±1,0,0), (0,±l ,0) , (0,0,±1),

where -C [3 y are given by
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We assume polynomial precision up to m = 4.

Figure 1 gives a graphical impression

U of the accuracy for a meridian on

the northern hemisphere passing

through the north pole.

so. 20" 20' s0

In the following we have used two times eight additional nodes to eliminate

the derivatives between the interpolating spline and the function u in a

local area around the north pole.

x x Figure 2 illustrates the distri-

bution of the points of the
X 0 X X northern hemisphere (projected into

6 C;O °  the equatorial plane).

xx "x" denotes the points of-

0o 00 while "o" and "o" stands for the
x nodes of 7 and J" respectively.

x x x x x3

x x

(±0.2500, ±0.2500, 0.9354)
(±0.3536, ±0.3536, 0.8660)

(±0.1721, ±0.0713, 0.9825)

J (±0.0713, ±0.1721, 0.9825)
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For comparison Figure 3 shows the graph of the interpolating spline with

respect to the 70 points of L while Figure 4 is based on all

78 points.

f Su f~s~

a0- 20- 20' 80- so* 20' 20- 80.

Figure 3 Figure 4

It turns out that we get an acceptable approximation in the neighborhood

of the north pole avoiding a deterioration of the accuracy in all other

parts of the northern hemisphere.

Unfortunately it appears that the Green function A

with respect to the operator 0491 cannot be expressed by an elementary

function. Thus the Green function has to be replaced hy an appropriate

exoression which is convenient for computational purposes.

In our example, satisfactory results can be achieved based on finite

partial sums of the bilinear expansion (6.11).

Other suggestions for replacing Green's (kernel) f-mctions by closed

forms convenient for computation will be discussed in Reuter 1982) and

7reeaen/Reuter (1982).
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